The area of a circle inscribed in an equilateral triangle is 154 sq. cm. Find the perimeter of the triangle
it is given that area of circle = πr2
πr2 = 154
⇒ (22/7) × r2 = 154
⇒ r2 = 154 × (7/22) = 49
∴ r = 7 cm
‘r’ can not be –ve , So r=7cm.
OD=7cm

⇒AO=14cm
⇒AO=OC=OB=14cm
In right triangle ODB, By using the formula

⇒BD=12.12
⇒BC=2BD=2×12.12=24.24cm
So, Perimeter of the equilateral triangle
⇒3×length of one side
⇒3×24.24
⇒72.74cm
More Articles
If sin theta = 4/5 , find the value of 4tan theta -5 cos theta/ sec theta plus 4 cot theta.
sec squared theta minus sin squared theta minus two sin power four/ 2cos power 4 – cos squared = 1